Description | The first edition of Artificial Intelligence: A Modern Approach has become a classic in the AI literature. It has been adopted by over 600 universities in 60 countries, and has been praised as the definitive synthesis of the field. In the second edition, every chapter has been extensively rewritten. Significant new material has been introduced to cover areas such as constraint satisfaction, fast propositional inference, planning graphs, internet agents, exact probabilistic inference, Markov Chain Monte Carlo techniques, Kalman filters, ensemble learning methods, statistical learning, probabilistic natural language models, probabilistic robotics, and ethical aspects of AI. The book is supported by a suite of online resources including source code, figures, lecture slides, a directory of over 800 links to "AI on the Web," and an online discussion group. All of this is available at: aima.cs.berkeley.edu. |